skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mattei, O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the one-dimensional case, the amplitude of a pulse that propagates in a homogeneous material whose properties are instantaneously changed in time will undergo an exponential increase due to the interference between the reflected and transmitted pulses generated at each sudden switch. Here, we resolve the issue by designing suitable reciprocal PT-symmetric space-time microstructures so that the interference between the scattered waves is such that the overall amplitude of the wave will be constant in time in each constituent material. Remarkably, for the geometries proposed here, a pulse will propagate with constant amplitude regardless of the impedance between the constituent materials, and for some, regardless of the wave speed mismatch. We extend, then, these results to the two-dimensional case, by proposing suitable geometries that avoid the blow up of the wave amplitude at the source point due to the scattering associated with time modulation. Given that the energy associated with the wave will increase exponentially in time, this creates the possibility to exploit the stable propagation of the pulse to accumulate energy for harvesting. 
    more » « less